

Maths statement of intent

Maths is essential to everyday life, whether it be working out the cost of shopping or working out how long you have got before your favorite TV show. We use Maths every day and as a result, we ensure that our children are fluent in the fundamentals of Mathematics and are able to apply these skills to reason and solve problems. We follow the National Curriculum and ensure that year group age related expectations are planned for using White Rose.

How do we teach Maths at Ashleworth C of E primary school?

At Ashleworth we teach stimulating and engaging Maths lessons every day in both classes. We make sure our lessons are challenging for all children through our 'Do it, Twist it, Solve it' approach.

'Do it' tasks develop children's fluency of skills. This includes using mathematical methods accurately and recalling facts efficiently. 'Twist it' tasks encourage children to use the skills learnt in the 'Do it' task to reason logically. This includes proving, explaining and justifying answers using correct mathematical vocabulary. 'Solve it' tasks require children to use their skills to solve problems with perseverance.

We also have a problem solving session each week, which focuses on a specific problem solving skill.

12Mi divide o 3	I divid number by a and with number using the	5101
when there are	no remainders,	2 D
p it	¥3 25	2 6
645 + 15	015645 315375	
) 735 + 15	045/ 075	5 8
) 375 + 15	b a a a a	4812
4) 406 + 14	Q15755 @14406	11
5) 812 + 14	75 282	T
Twist if		
Which is the odd one ou	1 32 32 32 DI5480 QIL488 31	36
2) 448 + 14	454 424	423
3) 504 + 14		
	The odd one and to the last one all	Cause is
Solve it		V
1) Alice has collected 4 her stamp book. How m page? Will there be any	35 stamps. She has 15 pages in any stamps will be on each remaining?	1 be no
2) A toy factory makes machines making the to	518 toys a day. There are 14 ys. How many toys does each Stampso	neach
machine make?	14518 Page.	
	098, 52/	the makes
	- Coys	

All use BDMAS to calculate of answer.DoitUse BIDMAS to calculate.1) $B^1 + 9 + (9 - 7)$ 2) (B + 9 + (1 - 7))2) (B + 9 + 6 + 1)2) $(B - 9) + 6^1$ 3 B + 9 + 1 + 1 + 2 + 33 B + 1 + 7 + 6 + 32) $(B - 9) + 6^1$ 3 B + 9 + 1 + 1 + 2 + 33 B + 1 + 7 + 6 + 32) $(B - 9) + 6^1$ 3 B + 9 + 1 + 1 + 2 + 33 B + 1 + 7 + 6 + 3 + 4

Examples of children's learning

Our Maths working walls

In both classrooms, we have a Maths working wall. These display small steps of learning for the current unit of work which shows each child what they will be learning next. We make sure Mathematical vocabulary is also displayed to encourage children to use it independently when justifying and explaining an answer.

*Picture of learning wall.

Regular skills practice

We have a daily arithmetic session where each child completes 'Rainbow Maths'. This gives children the opportunity to consolidate and revisit concepts.

RANBOW M	IA HS		G	REEN (3)
Alterration and a second second second	Tuesday	Wednesday	Thursd	ay since	Frideralitie
1x5 5	1 3x5 15	1 8×5 4-1	1 6x5	201 3	35+5 7/
2 2×5 10	2 5x5 25	2 2×5 10	2 5x5	25 2	5+5 1
3×5 15	3 6x5 301	3 4×5 20	8x5	40 3	10+5 2 /
4x5 2.0	4 8x5 40	4 5x5 2 5	4 20+5	1 1 4	25+5 5/
5x5 75	5 9×5 4-51	5 6x5 301	5 10+5	2 1 10	15+5 3 /
0 6x5 30	8 10×5 5 0	0. 3×5 1.5	6 45+5	8	40+5 8 /
7×5 35	4x5 2.61	7: 0x5 0	7 5+5	1	55+5
8×5 401	6 7×5 35	8 1x5 5	8 30+5	6 8	20+5 4 /
a axp H.B.	9 11 x5 5 5	9 5×5 25	1 25+5	5	60+5 121
10 10x5 50	10 12×5 60	10 4x5 2.0	10 6x5	70 10	45+5 9 /
11x5 55	11 1x5 5	11 8×5 4-0	11 4x5	20 1	30+5 6 /
12 12×5 60	12 2x5 10	12 7×5 35	/ 12 10 x 5	50 12	50+5 01
3×5 5	13 0x5 0	13 9x5 45	13 7x5	1-025	12×5 601
9x5 45	14 9×5 4-5	10 12x5 60/	14 12 x 5	50 / 14	6x5 301
10 5×5 25	13 1x5 36	15 8×5 40	15 60+5	2/15	8x5 40
10 7 x 5 35	10 5x5 25	10 6x5 30	10 40+5	8 10	2x5 10
8×5 70	10	19 225 10	17 55+5	1 17	12 601
11 11 15 55	18 20 4	19 11×5 55	18 15+5	3 18	7=5=0 45
201 4×5 201	19 7×5=5 /	20 3×5 1	00 25+5	19	7+5=4 2.0 /
21 10×5 E.G	20 40 8	21 12×5 Cm	21 3×5		Fre 25 /
22 0x5 0	21 9×5 4-51	22 9×5 4-5	22 12×5	20 20	0x5 0 1
23 12 x5 (0	22 1x5 51	23 5×5 250	23 8x5	10 23	7×5 35 1
24 2×5 10	23 3×5 151	24 8×5 120-	24 9×5	4-5 24	4x5 3 0 /
25 11×5 TT	26 6x5 90	25 3×5 15	25 6x5	20 25	12x5 60 J
2.5/	25. 10×5 50	ALCON DESCRIPTION	75	nar.	-15
25			15	-10	20

Outside of the Maths lesson, we practice our times tables. By the end of Key Stage 1, we aim for children to be able to recall their 2,5,10 and 3 times table. By the end of Year 4, children will be able to recall times tables up to 12 x 12.

How do we assess Maths?

We assess Maths on a daily basis through teacher's marking and children's selfevaluation. This information is then used to plan the subsequent lesson to ensure every child's needs are built on and met. Each child in Year 2-6 has a learning wall in their Maths book which outlines age related expectations. These are updated regularly by teachers and children.

Year 4 Maths Learning Wall								
Number and place value	I can order and compare permbers beyond 1000	I can recognise the place value of each digit in a digit number	I can count on and back in multiples of 7.89.25 and 1000	I can read Roman numerals to 100	Fcan count back through zero	I can compare and order decimals to two decimal places	I can round numbers to the nearest whole number, 10,	
	Calculation	I can add and subtract numbers up to tour-digits using a formal written method	l can add and subfract numbers with up to 1dp	l con multiple 2- digit and s-digit numbers by a one-raigit number	i cân recall multiplication and division facts for all tables up to 12 x 12	l con divide 3-digit numbers by a 1-digit number	2100 or 1000	
•	Fractions	I can add and subtract fractions with the same denominator	i can count up and down in hundredths	l can find an equivalent fraction from a given fraction	I can write decimal equivalents for 1/4, 1/2 and 3/4	I can multiply and divide 2-digit numbers by 10 arid 100		
Measurement	I can calculate using money in pounds and pence	I can convert between different units of measurement (eg km to m and hour to minute)	l can read, write and convert time between analogue and 24 hour digital clocks	l can convert between hours/minutes, years/months, weeks/days	I can find the area of a rectilinear shape by counting squares	l can measure and calculate the perimeter of a rectilinear figure, in cm an m	•	
	Geometry	I can identify lines of symmetry in 2d shapes	I can compare and classify polygons based on their properties	I can identify acute and obtuse angles and order them by size	I can plot specific coordinate points to draw a polygon	l can describe positions as coordinates in the first quadrant		
			Statistics	L can interpret and present discrete and continuous data in bar and line graphs for example	I can solve comparison and sum and difference problems from a range of charts and tables			

Maths is assessed 3 times a year using Milestones. Milestone 1 is for years 1 and 2; Milestone 2 is for years 3 and 4 and milestone 3 is for years 5 and 6. From this, we can see any gaps in individual children's progress and then support for the identified children is planned for the following term.

Reception are assessed against the Early Learning Goals.

Children are assessed at the end of Years 2 and 6 for the end of Key Stage Statutory assessments.